
A practical comparison of the Java and C++ resource

management facilities

Markus Winand

2003-02-08

Abstract

This paper is a comparative description of the resource management features of the Java
and C++ programming languages. Although there are already many ”comparisons” of those
two languages, it’s the opinion of the author that most of them are not very professional by
means of objectivity. I tried really hard to be objective (or at least more objective) and show
the strength and weaknesses of both languages.

The paper is divided into four sections, the first discusses the memory management1 and
focuses on exception safety, the second compares the Java finalizer and the C++ destructor.
The third section discusses Java finally blocks, and how C++ avoids the requirement for those.
The last section puts the pieces together and implements a commonly used structure in both
languages.

Copyright 2003 by Markus Winand <mws@fatalmind.com>
Maderspergerstr. 1/911, 1160 Vienna, Austria

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page.

1 It has to be mentioned that this paper does not cover the operator new overload possibilities of the C++

programming language.

1



1 Memory management

1.1 Java concepts

The Java programming language has a built in
garbage collection system. Based on the reach-
ability of an object (are there still references in
the program to this object) the JVM2 starts
the finalization process. [GJSB00, §12.6.1] in-
cludes the full state diagram of all eight pos-
sible object states. The two key states of ob-
jects are the reachability and the finalization
state. Both of them have three possible values.
Objects may be reachable, finalizer-reachable or
unreachable in terms of reachability or unfinal-
ized, finalizeable or finalized in terms of finaliza-
tion. Both states together result in a 3-by-3 ma-
trix including all possible object states, where
one state (unreachable and finalizeable) is im-
possible. This complex model is required to
make garbage collection of circular referenced
objects possible. This is an important feature to
allow leak free garbage collection for long run-
ning processes where circular references occur
(e.g. object A references to B and vice versa). A
pure reference count based garbage collector is
not able of collecting circular references, many
of them require the developer to manually break
the loop3.

The Java garbage collector (like most oth-
ers) does not specify when a finalizeable object
becomes finalized. The garbage collector does
not guarantee to finalize the objects in the or-
der they became finalizeable (which of course is
impossible for circular references).

The benefit of the garbage collection is that
it reduces the probability of memory leaks. The
responsibility to release unused memory has been
moved from the developer to the garbage collec-
tion, but there are still ways to leak memory4.
As a result of the introduction of the garbage
collector, the developer has no way to explic-
itly delete an object. The only thing that can
be done (and must be done sometimes to avoid
unused data stay referenced) is to set the ref-
erence to an unused object to null. That way
the object becomes finalizer-reachable and will
be garbage collected eventually (as long as there
are no other references).

2Java Virtual Machine
3 The perl garbage collector has this limitation.
4 This can happen if a resource stays referenced by

accident. This most probably happens when using col-
lections (containers).

1.2 C++ concepts

The C++ programming language does, per de-
fault, not use garbage collection. But in contrast
to the Java language, there are three different
locations where objects can be placed5:

• In the static memory

• On the stack (local store)

• On the heap (free store)

The following sections will explain the dif-
ferences between these locations, how they can
be combined and which benefits can be gained
from this.

1.2.1 Static objects

Objects in the static memory are objects which
are created on start of the program and will be
available until the program terminates. Global
and namespace variables are always placed in
the static memory, as well as class or function
variables6 with the static modifier.

Static objects are constructed only once at
program startup and deleted on normal program
termination7. The memory requirement is han-
dled by the compiler.

1.2.2 Objects on the stack

Objects located on the stack are fully managed
by the compiler. There is no need to manually
allocate memory of delete them when they are
no longer used.

To allow the compiler to take care of this de-
tails there are some limitations: only static sized
objects (objects for which the size is known at
compile time)8 and objects whose lifetime does

5 See [Str97, §C.9]
6 Static function variables are not created on program

startup, but the first time their declaration is encoun-
tered during execution of the program.

7 Static objects are not destructed if the program
terminates because exit, abort or similar functions
are called. Even if you are not using this functions,
it might happen indirectly if an unexpected exception
[Str97, §14.6.2] or uncaught exception [Str97, §14.7] hap-
pens.

8In fact every object has a static size which is known
at compile time (determined using the sizeof operator).
As a result, every object can be placed on the stack.
But this does not mean that all memory requirements
for this object can be satisfied by the stack: if you place
a string on the stack, the implementation of the string

would need to allocate memory from the heap to fulfill
it’s duty.

2



not exceed the block they are declared in, can
be placed on the stack.

Listing 1 demonstrates two objects (integer
values) placed on the stack. The x variable is

Listing 1: C++ Allocation on the stack

1 void StackAlloc ()
2 {
3 int x(0);
4 {
5 x = 3;
6 int y(x);
7 ++y;
8 }
9 x++;

10 }

declared in line 3 and exists until the block in
which it was declared ends (line 10). Between
it’s declaration and the block end in line 10 the
variable can be used. The y variable is con-
structed in line 69 and becomes destroyed in line
8.

As you can see, the construction of the ob-
jects is done explicit, but the destruction is done
automatically by the compiler. The compiler
will call the destructor of the objects which went
out of scope in reverse order of their construc-
tion. If a constructor throws an exception, the
corresponding destructor will not be called (only
successfully constructed objects can be destruc-
ted).

It is an important fact that objects on the
stack can not leak10.

1.2.3 Objects on the heap

Objects on the heap are dynamically allocated
at runtime. The C++ language provides the new
operator to allocate dynamic memory11. A ob-
ject created with the new operator exists until it
is explicitly destroyed using the delete opera-
tor.

Listing 2 demonstrates two integers which
are allocated on the heap12. Besides the already
mentioned new and delete operators, we notice

9 Other than C the C++ language allows local vari-
ables (objects on the stack) to be declared in the middle
of a block (C requires all declarations to be at the start
of the block).

10This is even true if an exception occurs, more details
later

11 In fact there is a set of operators which are related
to dynamic memory management. [Str97, §19.4.5] lists
six variations of operator new and a matching operator

delete for each. This paper will only use the most basic
variant. For details about the other variants (nothrow,

Listing 2: C++ Allocation on the heap

1 void HeapAlloc ()
2 {
3 int* x = new int (0);
4 int* z;
5 {
6 *x = 3;
7 int& y = * new int(*x);
8 y++;
9 z = &y;

10 }
11 (*x)++;
12 delete x;
13 ++(*z);
14 delete z;
15 }

that the integers are used through pointers and
references13. This is a result of the fact that the
new and delete operators operate on pointers.

The first object on the heap is constructed in
line 3, a pointer to the newly created integer is
stored in the x variable. This object exists until
it gets deleted in line 12. In the meantime it can
be used as pointer, or it’s value can be accessed
and manipulated using the unary * operator.
Another way is to use a reference as shown in
line 7. In that case y becomes an alias for the
integer created on the heap. The y variable can
be used in the same way as an object on the
stack can be used (as long as it has not been
deleted).

The integer allocated in line 7 can also be
accessed outside the block where it was allocated
(line 13)14. Further the objects can be destroyed
in another order than they were created.

The cost of this flexibility is that that you
have to manage everything yourself. The com-
piler does not delete the object for you and will
allow you to use a pointer to an object which has

array, and placement) have a look at [Str97].
12 In fact we see the use of two integers, two pointers

(x and z) and one reference (y). The integers are located
on the heap, the pointers and references are located on
the stack. You always need a pointer or reference to
access an object on the heap.

13 See [Str97, §5.5]
14 Note that the use of the y variable is not possible

outside the inner block, this is because the y variable
itself (the reference to the integer) is located on the stack
and will be deleted when the block ends in line 10.

The object which is referenced by this local variable is
not affected, but it is an important fact that the refer-
ences or pointers which are used to access the object on
the heap are located on the stack.

To allow the access outside this block, we have copied
the pointer to this object to the z variable which is ac-
cessible in the outer block.

3



already been deleted15. But the most problem-
atic aspect of this is that you have to manage the
cleanup of dynamically allocated memory even
in case of exceptions16. To address those aspects
of dynamically allocated memory C++ provides
the following techniques:

• Avoid the requirement for manually man-
aged dynamic memory

• Using smart pointer types

• Possibility to use custom garbage collec-
tors

The last point will not be covered in detail here,
in short there are systems which implement a
garbage collection for the C++ programming
language similar to Java. It has to be mentioned
that many of those garbage collectors have a
common limitation: they can not destruct the
object being collected. This means the destruc-
tor of the objects will not be called. In other
words, the garbage collector does not destroy
the object properly, they just re-use the memory
occupied by this object. Another description for
this technique is the ”infinite memory” model,
which means that the only resource which is cor-
rectly collected is the memory.

The first point is addressed with the STL17

which provides many generic class implementa-
tions for common requirements. The STL is
part of the C++ specification and is therefore
available on all C++ platforms. The majority
of STL classes implements some type of con-
tainer18 like linked lists, hash tables and strings.
Most of the time the STL can handle the dy-
namic memory for you and eliminate the re-
quirement to handle it manually.

The second point, smart pointer types, will
be covered in the following sections.

2 Destructor vs. finalizer

Both languages allow to implement some kind
of cleanup code which is executed before the
objects life time ends. The only difference is
that it is undefined when the Java finalizer will
be called (as already mentioned in 1.1) but it

15 e.g. if you would use *x after line 12
16 If line 7 would cause an exception, the object allo-

cated in line 3 would be lost. The memory occupied by
this object would leak.

17 Standard Template Library
18Also known as collection in Java terms

is clearly defined when the C++ destructor is
executed.

Those cleanup methods are usually required
to release some resources which where bound in
the constructor. If you would, for example, al-
locate dynamic memory in the constructor of a
C++ object, you need to deallocate this memory
if it is no longer used. Listing 3 demonstrates
such a C++ class with destructor.19 The con-

Listing 3: C++ destructor example

1 class CPPdeallocate {
2 public:
3 CPPdeallocate (): _p(new int ())
4 {
5 };
6

7 ~CPPdeallocate ()
8 {
9 delete _p;

10 }
11

12 private:
13 int* _p;
14 };

structor does initialize the private member vari-
able p20 with a pointer to a dynamically allo-
cated integer (line 3). The object could use this
integer during it’s life time, but if the CPPde-
allocate object gets deleted its destructor will
be called which will delete the object where p
points to (line 9).

The implementation of a similar example in
Java would not require a finalizer since the gar-
bage collector would take care about this. For
this reason the Java finalizers are less frequently
used than C++ destructors.

The drawback of the Java solution is that it
does well for memory, but what about other re-
sources? For example a file-handle, open socket
or similar. With C++ you can just use the same
technique, but for Java the use of the finalizer is
usually not sufficient, since it is undefined when
it’s called21. Listing 4 can be used to demon-
strate this. The work method constructs a new
resource, since the reference to this resource gets
lost when the work method exits, the resource
could be released. The ptime and sleepwell
methods are used for reporting and delaying.
The main method does call the work method,
sleeps two seconds and then calls the garbage

19 C++ requires the destructor to be named like the
class itself with a leading tilde.

20 This paper uses the convention to start non public
member variables with a leading underscore.

21 See [GJSB00, §12.6].

4



Listing 4: Java finalizer example

1 public class JavaFinalize {
2 private static void work () {
3 myresource t = new myresource ();
4 }
5

6 public static void ptime(String info ) {
7 System.out.println(info + " : " +
8 System.currentTimeMillis ());
9 }

10

11 private static void sleepwell(long m) {
12 try {
13 Thread.sleep(m);
14 } catch ( Exception e) { }
15 }
16

17 public static void main(String args []) {
18 ptime ("Start ");
19 work ();
20 ptime ("sleep ");
21

22 sleepwell (2000);
23

24 ptime ("sleep done ");
25 System.gc();
26 ptime ("End ");
27 }
28 }
29

30 class myresource {
31 protected void finalize () throws Throwable
32 {
33 JavaFinalize.ptime (" finalizer ");
34 super.finalize ();
35 }
36 }

collector22. For all steps the system timestamp
will be printed. The myresource class in the
end does only implement a finalizer that prints
the timestamp as well. As required in [GJSB00,
§12.6], each finalizer has to propagate the final-
ization to its super class manually.

If you run this program, you will notice that
the finalizer gets called after the sleep has been
done. If you would sleep longer, the stale object
would be deleted even later. If you wonder what
happens if you remove the explicit call to the
garbage collector, give it a try. There is not even
a guarantee that the finalizer is called before the
program terminates23.

In short, Java finalizers are not reliable. This
is the other reason why they are not used. If you

22 It’s possible to tell the JVM that now is a good
time to collect garbage, anyway there is still no guaran-
tee that the unreferenced objects are deleted when the
System.gc() call returns. The explicit call of the garbage
collector is not required, it’s just a hint to the JVM.

23 C++ defines that static objects will be destructed
at program termination [Str97, §10.4.3]. Since all ob-
jects on the stack will be destructed as well, only objects
on the heap will not be destructed automatically. One
limitation of this is that it does happen on abnormal ter-
mination like calling exit, abort or similar functions.

really need the functionality of a destructor in
Java, the only thing you can do is to implement
a public method which does the cleanup and call
it explicitly.

Even [Blo01, Item 6] focuses on the topic of
Java finalizers and gives the ultimate suggestion
”Avoid finalizers”.

3 finally blocks

Both languages know exceptions and support
try/catch blocks to handle them. But only the
Java programming language knows the so called
finally blocks. Finally blocks follow a try block
and can include code which will be executed re-
gardless how the try block finishes. This means
that the code in a finally block will be executed
if the try block is left normally (no exception)
as well as if there is a exception, and even if
there are two (in the try-block and in a catch
block). The finally block is always executed as
last part of the try block, so in the presence of
catch blocks, the catch blocks are executed first
in case of exceptions [GJSB00, §14.19.2].

For that reason finally blocks are used to
perform cleanup tasks. Listing 5 shows a com-
monly used Java structure24. In line 2 a resource

Listing 5: Java finally example

1 void JavaFinally () {
2 resource = new resource ();
3 try {
4 // something which could
5 // throw an exception
6 } finally {
7 resource.cleanup ();
8 }
9 }

is acquired (imagine), this resource needs to per-
form some cleanup tasks when it’s no longer
used.

To ensure that the cleanup will happen, re-
gardless how the try block is left, the finally
block will be used to call the cleanup method.
A common application for this structure is a
database connection pool. The acquire opera-
tion would, for example, get a database handle
out of a pool and the cleanup would hand it back
so that it can be reused . We will come back to
this example in the next section.

24 [AGH00, §8.4.1] does present another structure as
well. We will use the shorter version for simplicity.

5



The acquire operation is placed outside the
try block, so that if an exception happens in the
acquire operation, the cleanup is not done.25

The C++ programming language does not
have a direct equivalent of Java finally blocks.
But as we have seen in section 1.2.2 there is
something which, happens regardless how a block
is left: Objects placed on the stack get deleted
if the block in which they were declared ends.
And if an object gets deleted, it’s destructor is
called (see section 2).

To benefit from this, we will use a technique
mentioned earlier: Using smart pointer types.

The C++ language allows to override opera-
tors. There are only a few operator’s which can
not be overloaded, but the most operators used
to work with pointers can26.

The basic idea of a smart pointer is to im-
plement a class which is compatible to a normal
pointer and has a destructor which performs the
cleanup. The STL defines the auto_ptr<>27

class which implements such a pointer. This
pointer implements the so called ”destructive
copy” technique. This means that there can
be28 only one auto_ptr<> which owns the ob-
ject it points to. If this auto_ptr<> becomes
deleted the destructor will perform a delete on
the object it points to. This ensures that the
destruction of the pointer will also delete the
object it points to.

Listing 6 implements the same example as
listing 2 using auto_ptr<>’s. The #include in
line 1 makes the auto_ptr<> available29.

The key difference is that the integer point-
ers (int*) have been replaced by std::auto-
ptr<int> types30, and the deletes have been
25 To not loose any resources for cases where the ac-

quire operation throws an exception, the acquire oper-
ation must be implemented exception safe. [Sut99] ex-
plains this term in detail.

26 The pointer to members related operator .* can not
be defined by a user (see [Str97, §11.2]). Anyway, this is
far beyond the scope of this paper.

27 The <> brackets indicate that this type is a tem-
plate. [Jos99, Chapter 4.2] has a good introduction into
auto ptr<> for further reading.

28 In fact, the developer has to take care that one
object is owned by only one auto ptr<>. The auto ptr<>

assists by transfer of ownership if it is copied, but it is
still possible to construct two auto ptr<>’s with the same
object.

29 Java and C++ have very different ways to handle
libraries. There is no direct comparison to anything in
Java.

30 The leading std:: specifies the namespace . The
<int> specifies that this is an auto ptr to an integer
value.

Listing 6: C++ auto ptr<> example

1 #include <memory >
2

3 void CPPauto_ptr () {
4 std::auto_ptr <int > x(new int (0));
5 std::auto_ptr <int > z;
6 {
7 *x = 3;
8 std::auto_ptr <int > hlp(new int(*x));
9 int& y = * hlp;

10 y++;
11 z = hlp;
12 }
13 (*x)++;
14 ++(*z);
15 }

removed.
Another difference to listing 2 is the handling

of the reference y. The object where y references
to is now also managed by a auto_ptr<> called
hlp. To pass this object out of the inner block,
we have to copy a pointer to a variable which is
available in the outer block. This is done in line
11 similar to the previous example. By copy-
ing an auto_ptr<> like shown, there happens
something magic: the ownership of the object
is transfered to the left hand auto_ptr<>. The
other one hlp looses its ownership, therefore it
does not delete the object when it goes out of
scope in line 12. Now the z variable is respon-
sible for this object and will delete it if it goes
out of scope (line 15).

Another problem mentioned in 1.2.3 is also
solved by this technique: If, for example, an ex-
ception happens in line 8, the resources occupied
by the previously allocated object (line 4) will
be cleaned up properly. This is also the rea-
son why each allocated object is directly passed
to a auto_ptr<> (line 8). Using this technique
guarantees to not leak if an exception happens.

A word of warning has to be placed about
auto_ptr<>: it is not a generic pointer type, as
you have seen it has some very uncommon be-
havior (transfer of ownership, destructive copy)
which limits it’s use. Please consult [Jos99, Chap-
ter 4.2], [Str97, §14.4.2] and [Sut99, Item 37]
about the details of auto_ptr<>31.

Another pointer type which can be imple-
mented the very same way is a garbage collected
pointer type. Instead of implementing the own-
ership transfer as done with the auto_ptr<>,
you just need to introduce an usage counter.

31 [Jos99] does include a standard compliant imple-
mentation of auto ptr<> which has less than 100 lines of
code.

6



This counter would need to be incremented if
another pointer points to the same object and
be decremented if one of the pointers referencing
to this object gets deleted or gets a new object
assigned. If the usage count drops to zero, it
would delete the object it points to. The STL
does not contain such a pointer, anyway it isn’t
magic, it just needs some practice to do it32.

In fact, the C++ destructor can be used ev-
ery time you would use a Java finally block. In
contrast to a Java finally block, the solutions
presented here allow better code reuse and make
it impossible to forget a finally block. The next
section will demonstrate a non memory related
resource management using this technique.

4 final comparison

To have a comparison of both languages we will
implement the solution to a common problem.
For a database application you have a database
pool which is able of handling connections to a
database. The basic functionality is provided
by the get() method which returns a database-
handle that can be used to perform operations
on the database. The release() method has to
be used to hand the database-handle back to
the pool to allow its re-use. For this compari-
son we will imagine that we have such a facility
which we will just call pool for both languages.
Furthermore we will use handle to name the
database-handle class.

We will consider the Java code first. List-
ing 7 is a 1-by-1 implementation of the finally
technique described in listing 5. In line 2 the
database handle is acquired from the pool, the
body of the try-block does the operations on
the database and the finally block hands the re-
source back to the pool. Nothing surprising so
far, thats a very common structure in Java.

Now lets try to implement this example with
the C++ techniques described in the previous
section. The first thing we need is ”something

32 There are a lot of implementations of such a gar-
bage collected pointer. [Jos99, §6.8] presents such a im-
plementation called gc ptr. [Ale01, §7] implements a
configurable smart pointer, this can be configured to use
different ownership strategies, different testing, differ-
ent thread safety and so on. Other then most smart
pointer libraries, this one implements only one smart
pointer which can be parameterized by template param-
eters. This allows many combinations of the parameters
and makes it very easy to use exactly the type which fits
to a requirement.

Listing 7: Java database pool example

1 void DBPool(pool mypool ) {
2 handle h = mypool.get();
3 try {
4 // something which could
5 // throw an exception
6 // e.g.: h.executeQuery ()
7 } finally {
8 mypool.release(h);
9 }

10 }

similar to auto ptr<> but for database connec-
tions”. Listing 8 is a very short implementation
of such a class33. Line 1 declares the class to be

Listing 8: C++ garbage collected resource

1 template <class R, class P>
2 class gc_resource {
3 public:
4 gc_resource(P a_pool ):
5 _pool(a_pool),
6 _resource(_pool.get ()) {
7 }
8

9 ~gc_resource () {
10 _pool.release(_resource );
11 }
12

13 R* operator - >() {
14 return _resource;
15 }
16

17 private:
18 P& _pool;
19 R* _resource;
20 };

a template class which takes two type parame-
ters R (the resource, handler in our case) and P
(the pool). This is required to allow the class to
be reused for other types of resources, anyway
for this example you can imagine that P is re-
placed by pool and R by handler in the body
of the gc resource class.

The constructor in line 4 takes a pool as ar-
gument, stores it locally and performs the get()
operation on it. The result (the handler, or a
pointer to a handler in this example) is stored
locally too34. The destructor in line 9 returns

33 The listing is only for educational purposes. Basi-
cally it will work well, but there are some aspects which
should be considered before it is used for production
code. One of the major points not covered with the
shown implementation is the lack of handling copy as-
signment and copy construction.

34 The syntax used might look ugly, thats the syntax
for C++ member object initialization. In that example
it would also work if you would place the described logic
in the body of the constructor. In this case, the only
difference is a very minor performance drawback. But

7



the resource to the pool using the release() oper-
ation of the pool where the resource came from.

The function in line 13 overloads the -> deref-
erence operator, this is required to access the
handler from outside the gc resource class. In
fact it would be possible to implement a nor-
mal public method which returns the pointer (in
Java you have not other choice), by overloading
the dereference operator it is possible to use this
class as you would use a plain pointer.

Listing 9 does implement the same exception
safe code as listing 7 does for Java. As you no-

Listing 9: C++ database pool example

1 void DBPool(pool mypool ) {
2 gc_resource <handle , pool > h(mypool );
3

4 // something which could
5 // throw an exception
6 // e.g.: h->executeQuery ()
7 }

tice, there is no try-block. There is not even
code that releases the database handle in the
end. This is all handled by the destructor of
the gc resource variable h which is called if the
block ends in line 7.

Of course you can still add a try/catch block
to handle possible exceptions, but for the man-
agement of the handler isn’t required anymore.

On the first look, both implementations are
equivalent. The benefit of the C++ implementa-
tion is not to save some lines each time you have
such a structure (by the cost of some lines for
the implementation of gc resource). The benefit
is that there is nothing which can be forgotten.
By acquiring the resource the required cleanup
code is automatically installed.

On the other side, the Java implementation
doesn’t need a special class for this, and most
importantly it doesn’t need the know how to
implement this class. For sure the Java imple-
mentation is more straight, and easier to under-
stand without preparation. But of course it has
also drawbacks, for example that the program-
mer has to do the right thing every time again,
this does not only introduce duplicate code it is
error prone. For example somebody could forget
to release the handler, or do it at a wrong place
like a catch block or even without any exception
handling.

So whats better? It depends. In that case,

there can be cases where it makes a functional difference:
if an exception occurs

the best technology depends on the size of the
project. For smaller projects the Java solution
will be fully sufficient and just more straight.
For big projects the C++ solution might become
more interesting, since it allows the elimination
of duplicate code (which is error prone) by the
introduction of a small class like presented in
listing 8.

References

[AGH00] Ken Arnold, James Gosling, and
David Holmes. The Java Program-
ming Language. Addison Wesley,
third edition, 2000.

[Ale01] Andrei Alexandrescu. Modern C++
Design. Addison Wesley, 2001.

[Blo01] Joshua Bloch. Effective Java. Addi-
son Wesley, 2001.

[GJSB00] James Gosling, Bill Joy, Guy Steele,
and Gilad Bracha. The Java Lan-
guage Specification. Addison Wesley,
second edition, 2000.

[Jos99] Nicolai M. Josuttis. The C++ Stan-
dard Library. Addison Wesley, 1999.

[Str97] Bjarne Stroustrup. The C++ Pro-
gramming Language. Addison Wes-
ley, third edition, 1997.

[Sut99] Herb Sutter. Exceptional C++:
47 engineering puzzles, programming
problems, and solutions. Addison
Wesley, 1999.

8


